Computational time-of-flight diffuse optical tomography
Imaging through a strongly diffusive medium remains an outstanding challenge, in particular in applications in biological and medical imaging. Here, we propose a method based on a single-photon time-of-flight camera that allows, in combination with computational processing of the spatial and full temporal photon distribution data, imaging of an object embedded inside a strongly diffusive medium over more than 80 transport mean free paths. The technique is contactless and requires 1 s acquisition times, thus allowing Hz frame rate imaging. The imaging depth corresponds to several centimetres of human tissue and allows us to perform deep-body imaging as a proof of principle.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
![](https://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41566-019-0439-x/MediaObjects/41566_2019_439_Fig1_HTML.png)
![](https://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41566-019-0439-x/MediaObjects/41566_2019_439_Fig2_HTML.png)
![](https://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41566-019-0439-x/MediaObjects/41566_2019_439_Fig3_HTML.png)
![](https://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41566-019-0439-x/MediaObjects/41566_2019_439_Fig4_HTML.png)
![](https://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41566-019-0439-x/MediaObjects/41566_2019_439_Fig5_HTML.png)
![](https://media.springernature.com/m312/springer-static/image/art%3A10.1038%2Fs41566-019-0439-x/MediaObjects/41566_2019_439_Fig6_HTML.png)
Similar content being viewed by others
![](https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41598-023-48270-7/MediaObjects/41598_2023_48270_Fig1_HTML.png)
Quantum optical tomography based on time-resolved and mode-selective single-photon detection by femtosecond up-conversion
Article Open access 29 November 2023
![](https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41598-021-96619-7/MediaObjects/41598_2021_96619_Fig1_HTML.png)
Accessing depth-resolved high spatial frequency content from the optical coherence tomography signal
Article Open access 24 August 2021
![](https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41598-021-81713-7/MediaObjects/41598_2021_81713_Fig1_HTML.png)
Bayesian analysis of depth resolved OCT attenuation coefficients
Article Open access 26 January 2021
Data availability
All data used in this work are available from https://doi.org/10.5525/gla.researchdata.642
Code availability
All codes used in this work are available from https://doi.org/10.5525/gla.researchdata.642
References
- Katz, O., Heidmann, P., Fink, M. & Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photon.8, 784–790 (2014). ArticleADSGoogle Scholar
- Woo, S. et al. Three-dimensional imaging of macroscopic objects hidden behind scattering media using time-gated aperture synthesis. Opt. Express25, 32722–32731 (2017). ArticleADSGoogle Scholar
- Satat, G., Tancik, M., Gupta, O., Heshmat, B. & Raskar, R. Object classification through scattering media with deep learning on time resolved measurement. Opt. Express25, 17466–17479 (2017). ArticleADSGoogle Scholar
- Wang, L. et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science253, 769 (1991). ArticleADSGoogle Scholar
- Konecky, S. D. et al. Imaging complex structures with diffuse light. Opt. Express16, 5048 (2008). ArticleADSGoogle Scholar
- Durduran, T., Choe, R., Baker, W. B. & Yodh, A. G. Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys.73, 076701 (2010). ArticleADSGoogle Scholar
- Pifferi, A. et al. New frontiers in time-domain diffuse optics, a review. J. Biomed. Opt.21, 091310 (2016). ArticleADSGoogle Scholar
- Shi, L. & Alfano, R. R. Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods (Pan Stanford, 2017).
- Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol.58, R37–R61 (2013). ArticleADSMathSciNetGoogle Scholar
- Delpy, D. T. et al. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol.33, 1433–1442 (1988). ArticleGoogle Scholar
- Patterson, B., Chance, M. S. & Wilson, B. C. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt.28, 2331–2336 (1989). ArticleADSGoogle Scholar
- Jacques, S. L. Time resolved propagation of ultrashort laser pulses within turbid tissues. Appl. Opt.28, 2223–2229 (1989). ArticleADSGoogle Scholar
- Hebden, J. C. Evaluating the spatial resolution performance of a time-resolved optical imaging system. Med. Phys.19, 1081–1087 (1992). ArticleGoogle Scholar
- Hebden, J. C., Hall, D. J. & Delpy, D. T. The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation. Med. Phys.22, 201–208 (1995). ArticleGoogle Scholar
- Gibson, A. P. & Dehghani, A. Diffuse optical imaging. Philos. Trans. R. Soc. A367, 3055–3072 (2009). ArticleADSMathSciNetGoogle Scholar
- Berg, R., Jarlman, O. & Svanberg, S. Medical transillumination imaging using short-pulse diode lasers. Appl. Opt.32, 574–579 (1993). ArticleADSGoogle Scholar
- Grosenick, D., Wabnitz, H., Rinneberg, H. H., Moesta, K. T. & Schlag, P. M. Development of a time-domain optical mammograph and first in vivo applications. Appl. Opt.38, 2927–2943 (1999). ArticleADSGoogle Scholar
- Boas, D. A. et al. Imaging the body with diffuse optical tomography. IEEE Signal Process. Mag.18, 57–75 (2001). ArticleADSGoogle Scholar
- Torricelli, A. et al. Time domain functional NIRS imaging for human brain mapping. Neuroimage85, 28–50 (2014). ArticleGoogle Scholar
- Eggebrecht, A. T. et al. Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photon.8, 448–454 (2014). ArticleADSGoogle Scholar
- Dalla Mora, A. et al. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity. Biomed. Opt. Express6, 1749–1760 (2015). ArticleGoogle Scholar
- Pavia, J. M., Wolf, M. & Charbon, E. Single-photon avalanche diode imagers applied to near-infrared imaging. IEEE J. Sel. Top. Quantum Electron.20, 3800908 (2014). Google Scholar
- Gibson, A. P., Hebden, J. C. & Arridge, S. R. Recent advances in diffuse optical imaging. Phys. Med. Biol.50, R1–R43 (2005). ArticleADSGoogle Scholar
- Ripoll, J., Nieto-Vesperinas, M. & Carminati, R. Spatial resolution of diffuse photon density waves. J. Opt. Soc. Am. A16, 1466 (1999). ArticleADSGoogle Scholar
- Azizi, L., Zarychta, K., Ettori, D., Tinet, E. & Tualle, J.-M. Ultimate spatial resolution with diffuse optical tomography. Opt. Express17, 12132 (2009). ArticleADSGoogle Scholar
- Satat, G., Heshmat, B., Raviv, D. & Raskar, R. All photons imaging through volumetric scattering. Sci. Rep.6, 33946 (2016). ArticleADSGoogle Scholar
- Cai, W. et al. Time-resolved optical diffusion tomographic image reconstruction in highly scattering turbid media. Proc. Natl Acad. Sci. USA93, 13561–13564 (1996). ArticleADSGoogle Scholar
- Gariepy, G. et al. Single-photon sensitive light-in-fight imaging. Nat. Commun.6, 6021 (2015). ArticleADSGoogle Scholar
- Yoo, K., Liu, F. & Alfano, R. When does the diffusion approximation fail to describe photon transport in random media? Phys. Rev. Lett.64, 2647 (1990). ArticleADSGoogle Scholar
- Wang, L. V. & Wu, H.-I. in Biomedical Optics: Principles and Imaging Ch. 8, 249–281 (Wiley, 2007).
- Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol.58, 5007–5008 (2013). ArticleMathSciNetGoogle Scholar
- Gyongy, I. et al. A 256 × 256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications. IEEE Trans. Electron. Dev.65, 547 (2018). ArticleADSGoogle Scholar
- Combettes, P. L. & Pesquet, J.-C. in Fixed-Point Algorithms for Inverse Problems in Science and Engineering (eds Bauschke, H. H. et al.) Ch. 10, 185–212 (Springer, 2011).
- Komodakis, N. & Pesquet, J.-C. Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems. IEEE Signal Process. Mag.32, 31–54 (2015). ArticleADSGoogle Scholar
- Mallat, S. A. Wavelet Tour of Signal Processing 2nd edn (Academic Press, 2009).
- Rudin, L. I., Osher, S. & Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D60, 259–268 (1992). ArticleADSMathSciNetGoogle Scholar
- Berisha, S. & Nagy, J. G. in Academic Press Library in Signal Processing Vol. 4 (eds Chellappa, R. & Theodoridis, S.) 193–247 (Elsevier, 2014).
Acknowledgements
D.F. acknowledges financial support the Engineering and Physical Sciences Research Council, UK (grants EP/M006514/1 and EP/M01326X/1). Y.W. acknowledges financial support from the Engineering and Physical Sciences Research Council, UK (grants EP/M008843/1 and EP/M011089/1).
Author information
Authors and Affiliations
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK Ashley Lyons & Daniele Faccio
- School of Computing Science, University of Glasgow, Glasgow, UK Francesco Tonolini
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, UK Alessandro Boccolini
- Institute of Sensors, Signals and System, Heriot-Watt University, Edinburgh, UK Audrey Repetti & Yves Wiaux
- Institute for Micro and Nano Systems, University of Edinburgh, Edinburgh, UK Robert Henderson
- Ashley Lyons